a2(lambda1(x), y) -> lambda1(a2(x, 1))
a2(lambda1(x), y) -> lambda1(a2(x, a2(y, t)))
a2(a2(x, y), z) -> a2(x, a2(y, z))
lambda1(x) -> x
a2(x, y) -> x
a2(x, y) -> y
↳ QTRS
↳ DependencyPairsProof
a2(lambda1(x), y) -> lambda1(a2(x, 1))
a2(lambda1(x), y) -> lambda1(a2(x, a2(y, t)))
a2(a2(x, y), z) -> a2(x, a2(y, z))
lambda1(x) -> x
a2(x, y) -> x
a2(x, y) -> y
A2(lambda1(x), y) -> A2(y, t)
A2(a2(x, y), z) -> A2(x, a2(y, z))
A2(lambda1(x), y) -> A2(x, a2(y, t))
A2(a2(x, y), z) -> A2(y, z)
A2(lambda1(x), y) -> A2(x, 1)
A2(lambda1(x), y) -> LAMBDA1(a2(x, a2(y, t)))
A2(lambda1(x), y) -> LAMBDA1(a2(x, 1))
a2(lambda1(x), y) -> lambda1(a2(x, 1))
a2(lambda1(x), y) -> lambda1(a2(x, a2(y, t)))
a2(a2(x, y), z) -> a2(x, a2(y, z))
lambda1(x) -> x
a2(x, y) -> x
a2(x, y) -> y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
A2(lambda1(x), y) -> A2(y, t)
A2(a2(x, y), z) -> A2(x, a2(y, z))
A2(lambda1(x), y) -> A2(x, a2(y, t))
A2(a2(x, y), z) -> A2(y, z)
A2(lambda1(x), y) -> A2(x, 1)
A2(lambda1(x), y) -> LAMBDA1(a2(x, a2(y, t)))
A2(lambda1(x), y) -> LAMBDA1(a2(x, 1))
a2(lambda1(x), y) -> lambda1(a2(x, 1))
a2(lambda1(x), y) -> lambda1(a2(x, a2(y, t)))
a2(a2(x, y), z) -> a2(x, a2(y, z))
lambda1(x) -> x
a2(x, y) -> x
a2(x, y) -> y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
A2(lambda1(x), y) -> A2(y, t)
A2(a2(x, y), z) -> A2(x, a2(y, z))
A2(lambda1(x), y) -> A2(x, a2(y, t))
A2(a2(x, y), z) -> A2(y, z)
A2(lambda1(x), y) -> A2(x, 1)
a2(lambda1(x), y) -> lambda1(a2(x, 1))
a2(lambda1(x), y) -> lambda1(a2(x, a2(y, t)))
a2(a2(x, y), z) -> a2(x, a2(y, z))
lambda1(x) -> x
a2(x, y) -> x
a2(x, y) -> y
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A2(lambda1(x), y) -> A2(y, t)
A2(lambda1(x), y) -> A2(x, a2(y, t))
A2(lambda1(x), y) -> A2(x, 1)
Used ordering: Polynomial Order [17,21] with Interpretation:
A2(a2(x, y), z) -> A2(x, a2(y, z))
A2(a2(x, y), z) -> A2(y, z)
POL( A2(x1, x2) ) = x1 + x2
POL( lambda1(x1) ) = x1 + 1
POL( t ) = 0
POL( a2(x1, x2) ) = x1 + x2
POL( 1 ) = 0
a2(lambda1(x), y) -> lambda1(a2(x, a2(y, t)))
lambda1(x) -> x
a2(x, y) -> y
a2(lambda1(x), y) -> lambda1(a2(x, 1))
a2(a2(x, y), z) -> a2(x, a2(y, z))
a2(x, y) -> x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
A2(a2(x, y), z) -> A2(x, a2(y, z))
A2(a2(x, y), z) -> A2(y, z)
a2(lambda1(x), y) -> lambda1(a2(x, 1))
a2(lambda1(x), y) -> lambda1(a2(x, a2(y, t)))
a2(a2(x, y), z) -> a2(x, a2(y, z))
lambda1(x) -> x
a2(x, y) -> x
a2(x, y) -> y
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A2(a2(x, y), z) -> A2(x, a2(y, z))
A2(a2(x, y), z) -> A2(y, z)
POL( A2(x1, x2) ) = max{0, x1 - 2}
POL( a2(x1, x2) ) = x1 + x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
a2(lambda1(x), y) -> lambda1(a2(x, 1))
a2(lambda1(x), y) -> lambda1(a2(x, a2(y, t)))
a2(a2(x, y), z) -> a2(x, a2(y, z))
lambda1(x) -> x
a2(x, y) -> x
a2(x, y) -> y